Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 32(4): 952-968, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38327046

RESUMO

We analyzed retrospective data from toxicology studies involving administration of high doses of adeno-associated virus expressing different therapeutic transgenes to 21 cynomolgus and 15 rhesus macaques. We also conducted prospective studies to investigate acute toxicity following high-dose systemic administration of enhanced green fluorescent protein-expressing adeno-associated virus to 10 rhesus macaques. Toxicity was characterized by transaminitis, thrombocytopenia, and alternative complement pathway activation that peaked on post-administration day 3. Although most animals recovered, some developed ascites, generalized edema, hyperbilirubinemia, and/or coagulopathy that prompted unscheduled euthanasia. Study endpoint livers from animals that recovered and from unscheduled necropsies of those that succumbed to toxicity were analyzed via hypothesis-driven histopathology and unbiased single-nucleus RNA sequencing. All liver cell types expressed high transgene transcript levels at early unscheduled timepoints that subsequently decreased. Thrombocytopenia coincided with sinusoidal platelet microthrombi and sinusoidal endothelial injury identified via immunohistology and single-nucleus RNA sequencing. Acute toxicity, sinusoidal injury, and liver platelet sequestration were similarly observed with therapeutic transgenes and enhanced green fluorescent protein at doses ≥1 × 1014 GC/kg, suggesting it was the consequence of high-dose systemic adeno-associated virus administration, not green fluorescent protein toxicity. These findings highlight a potential toxic effect of high-dose intravenous adeno-associated virus on nonhuman primate liver microvasculature.


Assuntos
Dependovirus , Trombocitopenia , Animais , Dependovirus/genética , Macaca mulatta/genética , Estudos Prospectivos , Estudos Retrospectivos , Fígado/metabolismo , Transgenes , Trombocitopenia/metabolismo , Células Endoteliais , Vetores Genéticos/genética
2.
Front Immunol ; 14: 1094279, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033976

RESUMO

Immune responses to human non-self transgenes can present challenges in preclinical studies of adeno-associated virus (AAV) gene therapy candidates in nonhuman primates. Although anti-transgene immune responses are usually mild and non-adverse, they can confound pharmacological readouts and complicate translation of results between species. We developed a gene therapy candidate for Pompe disease consisting of AAVhu68, a clade F AAV closely related to AAV9, that expresses an engineered human acid-alpha glucosidase (hGAA) tagged with an insulin-like growth factor 2 variant (vIGF2) peptide for enhanced cell uptake. Rhesus macaques were administered an intravenous dose of 1x1013 genome copies (GC)/kg, 5x1013 GC/kg, or 1 x 1014 GC/kg of AAVhu68.vIGF2.hGAA. Some unusually severe adaptive immune responses to hGAA presented, albeit with a high degree of variability between animals. Anti-hGAA responses ranged from absent to severe cytotoxic T-cell-mediated myocarditis with elevated troponin I levels. Cardiac toxicity was not dose dependent and affected five out of eleven animals. Upon further investigation, we identified an association between toxicity and a major histocompatibility complex class I haplotype (Mamu-A002.01) in three of these animals. An immunodominant peptide located in the C-terminal region of hGAA was subsequently identified via enzyme-linked immunospot epitope mapping. Another notable observation in this preclinical safety study cohort pertained to the achievement of robust and safe gene transfer upon intravenous administration of 5x1013 GC/kg in one animal with a low pre-existing neutralizing anti-capsid antibodies titer (1:20). Collectively, these findings may have significant implications for gene therapy inclusion criteria.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Miocardite , Humanos , Animais , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo , Dependovirus , Macaca mulatta/metabolismo , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia
3.
Mol Ther Methods Clin Dev ; 29: 32-39, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36936447

RESUMO

Crigler-Najjar syndrome is a rare disorder of bilirubin metabolism caused by uridine diphosphate glucuronosyl transferase 1A1 (UGT1A1) mutations characterized by hyperbilirubinemia and jaundice. No cure currently exists; treatment options are limited to phototherapy, whose effectiveness diminishes over time, and liver transplantation. Here, we evaluated the therapeutic potential of systemically administered, lipid nanoparticle-encapsulated human UGT1A1 (hUGT1A1) mRNA therapy in a Crigler-Najjar mouse model. Ugt1 knockout mice were rescued from lethal post-natal hyperbilirubinemia by phototherapy. These adult Ugt1 knockout mice were then administered a single lipid nanoparticle-encapsulated hUGT1A1 mRNA dose. Within 24 h, serum total bilirubin levels decreased from 15 mg/dL (256 µmol/L) to <0.5 mg/dL (9 µmol/L), i.e., slightly above wild-type levels. This reduction was sustained for 2 weeks before bilirubin levels rose and returned to pre-treatment levels by day 42 post-administration. Sustained reductions in total bilirubin levels were achieved by repeated administration of the mRNA product in a frequency-dependent manner. We were also able to rescue the neonatal lethality phenotype seen in Ugt1 knockout mice with a single lipid nanoparticle dose, which suggests that this may be a treatment modality appropriate for metabolic crisis situations. Therefore, lipid nanoparticle-encapsulated hUGT1A1 mRNA may represent a potential treatment for Crigler-Najjar syndrome.

4.
Mol Ther Methods Clin Dev ; 27: 272-280, 2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36320416

RESUMO

Gene therapy using neurotropic adeno-associated virus vectors represents an emerging solution for genetic disorders affecting the central nervous system. The first approved central nervous system-targeting adeno-associated virus gene therapy, Zolgensma®, for treating spinal muscular atrophy is administered intravenously at high doses that cause liver-associated adverse events in 20%-30% of patients. Intrathecal routes of vector administration, such as the intra-cisterna magna route, provide efficient gene transduction to central nervous system cells while reducing off-target liver transduction. However, significant levels of liver transduction often occur upon intra-cisterna magna vector delivery in preclinical studies. Using vectors expressing monoclonal antibody transgenes, we examined whether passive transfer of adeno-associated virus-neutralizing antibodies as intravenous immunoglobulin before intrathecal adeno-associated virus delivery improved the safety of viral gene therapy targeting the central nervous system in mice and nonhuman primates. We used intracerebroventricular and intra-cisterna magna routes for vector administration to mice and nonhuman primates, respectively, and evaluated transgene expression and vector genome distribution. Our data indicate that pretreatment with intravenous immunoglobulin significantly reduced gene transduction to the liver and other peripheral organs but not to the central nervous system in both species. With further refinement, this method may improve the safety of adeno-associated virus-based, central nervous system-targeting gene therapies in clinical settings.

6.
Hum Gene Ther ; 33(21-22): 1174-1186, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36375122

RESUMO

Transthyretin amyloidosis (ATTR) is a progressive and fatal disease caused by transthyretin (TTR) amyloid fibril accumulation in tissues, which disrupts organ function. As the TTR protein is primarily synthesized by the liver, liver transplantation can cure familial ATTR but is not an option for the predominant age-related wild-type ATTR. Approved treatment approaches include TTR stabilizers and an RNA-interference therapeutic, but these require regular re-administration. Gene editing could represent an effective one-time treatment. We evaluated adeno-associated virus (AAV) vector-delivered, gene-editing meganucleases to reduce TTR levels. We used engineered meganucleases targeting two different sites within the TTR gene. AAV vectors expressing TTR meganuclease transgenes were first tested in immunodeficient mice expressing the human TTR sequence delivered using an AAV vector and then against the endogenous TTR gene in rhesus macaques. Following a dose of 3 × 1013 genome copies per kilogram, we detected on-target editing efficiency of up to 45% insertions and deletions (indels) in the TTR genomic DNA locus and >80% indels in TTR RNA, with a concomitant decrease in serum TTR levels of >95% in macaques. The significant reduction in serum TTR levels following TTR gene editing indicates that this approach could be an effective treatment for ATTR.


Assuntos
Neuropatias Amiloides Familiares , Dependovirus , Humanos , Camundongos , Animais , Dependovirus/genética , Dependovirus/metabolismo , Macaca mulatta/genética , Macaca mulatta/metabolismo , Neuropatias Amiloides Familiares/terapia , Neuropatias Amiloides Familiares/tratamento farmacológico , Pré-Albumina/genética , Pré-Albumina/metabolismo , Pré-Albumina/uso terapêutico , RNA/uso terapêutico
7.
Hum Gene Ther ; 33(9-10): 499-517, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333110

RESUMO

Krabbe disease is a lysosomal storage disease caused by mutations in the gene that encodes galactosylceramidase, in which galactosylsphingosine (psychosine) accumulation drives demyelination in the central and peripheral nervous systems, ultimately progressing to death in early childhood. Gene therapy, alone or in combination with transplant, has been developed for almost two decades in mouse models, with increasing therapeutic benefit paralleling the improvement of next-generation adeno-associated virus (AAV) vectors. This effort has recently shown remarkable efficacy in the canine model of the disease by two different groups that used either systemic or cerebrospinal fluid (CSF) administration of AAVrh10 or AAV9. Building on our experience developing CSF-delivered, AAV-based drug products for a variety of neurodegenerative disorders, we conducted efficacy, pharmacology, and safety studies of AAVhu68 delivered to the CSF in two relevant natural Krabbe animal models, and in nonhuman primates. In newborn Twitcher mice, the highest dose (1 × 1011 genome copies [GC]) of AAVhu68.hGALC injected into the lateral ventricle led to a median survival of 130 days compared to 40.5 days in vehicle-treated mice. When this dose was administered intravenously, the median survival was 49 days. A single intracisterna magna injection of AAVhu68.cGALC at 3 × 1013 GC into presymptomatic Krabbe dogs increased survival for up to 85 weeks compared to 12 weeks in controls. It prevented psychosine accumulation in the CSF, preserved peripheral nerve myelination, ambulation, and decreased brain neuroinflammation and demyelination, although some regions remained abnormal. In a Good Laboratory Practice-compliant toxicology study, we administered the clinical candidate into the cisterna magna of 18 juvenile rhesus macaques at 3 doses that displayed efficacy in mice. We observed no dose-limiting toxicity and sporadic minimal degeneration of dorsal root ganglia (DRG) neurons. Our studies demonstrate the efficacy, scalability, and safety of a single cisterna magna AAVhu68 administration to treat Krabbe disease. ClinicalTrials.Gov ID: NCT04771416.


Assuntos
Leucodistrofia de Células Globoides , Animais , Pré-Escolar , Dependovirus/genética , Modelos Animais de Doenças , Cães , Terapia Genética , Humanos , Leucodistrofia de Células Globoides/genética , Leucodistrofia de Células Globoides/terapia , Macaca mulatta/genética , Camundongos , Psicosina
8.
Mol Ther Methods Clin Dev ; 24: 292-305, 2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35211641

RESUMO

Ornithine transcarbamylase deficiency is a rare X-linked genetic urea cycle disorder leading to episodes of acute hyperammonemia, adverse cognitive and neurological effects, hospitalizations, and in some cases death. DTX301, a non-replicating, recombinant self-complimentary adeno-associated virus vector serotype 8 (scAAV8)-encoding human ornithine transcarbamylase, is a promising gene therapy for ornithine transcarbamylase deficiency; however, the impact of sex and prophylactic immunosuppression on ornithine transcarbamylase gene therapy outcomes is not well characterized. This study sought to describe the impact of sex and immunosuppression in adult, sexually mature female and male cynomolgus macaques through day 140 after DTX301 administration. Four study groups (n = 3/group) were included: male non-immunosuppressed; male immunosuppressed; female non-immunosuppressed; and female immunosuppressed. DTX301 was well tolerated with and without immunosuppression; no notable differences were observed between female and male groups across outcome measures. Prednisolone-treated animals exhibited a trend toward greater vector genome and transgene expression, although the differences were not statistically significant. The hepatic interferon gene signature was significantly decreased in prednisolone-treated animals, and a significant inverse relationship was observed between interferon gene signature levels and hepatic vector DNA and transgene RNA. These observations were not sustained upon immunosuppression withdrawal. Further studies may determine whether the observed effect can be prolonged.

9.
Hum Gene Ther ; 33(7-8): 421-431, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34652966

RESUMO

Hemophilia A, a bleeding disorder, affects 1:5,000 males and is caused by a deficiency of human blood coagulation factor VIII (hFVIII). Studies in mice and macaques identified AAVhu37.E03.TTR.hFVIIIco-SQ.PA75 as a clinical candidate gene therapy vector to treat hemophilia A. In this study, we sought to determine the minimally effective dose (MED) of this vector in a hemophilia A mouse model. Mice received one of four vector doses (3 × 1011-1 × 1013 genome copies [GCs]/kg) via intravenous tail vein injection; one cohort received vehicle as a control. Animals were monitored daily after vector/vehicle administration. Blood samples were collected to evaluate hFVIII activity levels and anti-hFVIII antibodies. Animals were sacrificed and necropsied on days 28 and 56; tissues were harvested for histopathological examination and blood was collected for serum chemistry panel analysis. We found no significant differences in liver transaminase levels in mice administered any vector dose compared to those administered vehicle (except for one group administered 3 × 1011 GC/kg). Total bilirubin levels were significantly elevated compared to the vehicle group following two vector doses at day 56 (1 × 1012 and 1 × 1013 GC/kg). We observed no vector-related gross or histological findings. Most microscopic findings were in the vehicle group and considered secondary to blood loss, an expected phenotype of this mouse model. Since we observed no dose-limiting safety markers, we determined that the maximally tolerated dose was greater than or equal to the highest dose tested (1 × 1013 GC/kg). Since we detected hFVIII activity in all cohorts administered vector, we conclude that the MED is 3 × 1011 GC/kg-the lowest dose evaluated in this study.


Assuntos
Dependovirus , Hemofilia A , Animais , Dependovirus/genética , Modelos Animais de Doenças , Fator VIII/genética , Fator VIII/uso terapêutico , Feminino , Terapia Genética , Vetores Genéticos/genética , Hemofilia A/genética , Hemofilia A/terapia , Humanos , Masculino , Camundongos
10.
Mol Ther ; 29(6): 2019-2029, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-33609733

RESUMO

Gene disruption via programmable, sequence-specific nucleases represents a promising gene therapy strategy in which the reduction of specific protein levels provides a therapeutic benefit. Proprotein convertase subtilisin/kexin type 9 (PCSK9), an antagonist of the low-density lipoprotein (LDL) receptor, is a suitable target for nuclease-mediated gene disruption as an approach to treat hypercholesterolemia. We sought to determine the long-term durability and safety of PCSK9 knockdown in non-human primate (NHP) liver by adeno-associated virus (AAV)-delivered meganuclease following our initial report on the feasibility of this strategy. Six previously treated NHPs and additional NHPs administered AAV-meganuclease in combination with corticosteroid treatment or an alternative AAV serotype were monitored for a period of up to 3 years. The treated NHPs exhibited a sustained reduction in circulating PCSK9 and LDL cholesterol (LDL-c) through the course of the study concomitant with stable gene editing of the PCSK9 locus. Low-frequency off-target editing remained stable, and no obvious adverse changes in histopathology of the liver were detected. We demonstrate similar on-target nuclease activity in primary human hepatocytes using a chimeric liver-humanized mouse model. These studies demonstrate that targeted in vivo gene disruption exerts a lasting therapeutic effect and provide pivotal data for safety considerations, which support clinical translation.


Assuntos
Edição de Genes , Lipoproteínas LDL/metabolismo , Pró-Proteína Convertase 9/genética , Animais , Sistemas CRISPR-Cas , Dependovirus/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Lipoproteínas LDL/genética , Fígado/metabolismo , Camundongos , Camundongos Knockout , Primatas , Pró-Proteína Convertase 9/metabolismo
11.
Sci Transl Med ; 12(569)2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33177182

RESUMO

Delivering adeno-associated virus (AAV) vectors into the central nervous system of nonhuman primates (NHPs) via the blood or cerebral spinal fluid is associated with dorsal root ganglion (DRG) toxicity. Conventional immune-suppression regimens do not prevent this toxicity, possibly because it may be caused by high transduction rates, which can, in turn, cause cellular stress due to an overabundance of the transgene product in target cells. To test this hypothesis and develop an approach to eliminate DRG toxicity, we exploited endogenous expression of microRNA (miR) 183 complex, which is largely restricted to DRG neurons, to specifically down-regulate transgene expression in these cells. We introduced sequence targets for miR183 into the vector genome within the 3' untranslated region of the corresponding transgene messenger RNA and injected vectors into the cisterna magna of NHPs. Administration of unmodified AAV vectors resulted in robust transduction of target tissues and toxicity in DRG neurons. Consistent with the proposal that immune system activity does not mediate this neuronal toxicity, we found that steroid administration was ineffective in alleviating this pathology. However, including miR183 targets in the vectors reduced transgene expression in, and toxicity of, DRG neurons without affecting transduction elsewhere in the primate's brain. This approach might be useful in reducing DRG toxicity and the associated morbidity and should facilitate the development of AAV-based gene therapies for many central nervous system diseases.


Assuntos
Dependovirus , MicroRNAs , Animais , Dependovirus/genética , Gânglios Espinais , Técnicas de Transferência de Genes , Vetores Genéticos/genética , MicroRNAs/genética , Primatas , Transdução Genética , Transgenes/genética
12.
Hum Gene Ther ; 31(15-16): 808-818, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32845779

RESUMO

The administration of adeno-associated virus (AAV) vectors to nonhuman primates (NHP) via the blood or cerebrospinal fluid (CSF) can lead to dorsal root ganglion (DRG) pathology. The pathology is minimal to moderate in most cases; clinically silent in affected animals; and characterized by mononuclear cell infiltrates, neuronal degeneration, and secondary axonopathy of central and peripheral axons on histopathological analysis. We aggregated data from 33 nonclinical studies in 256 NHP and performed a meta-analysis of the severity of DRG pathology to compare different routes of administration, dose, time course, study conduct, age of the animals, sex, capsid, promoter, capsid purification method, and transgene. DRG pathology was observed in 83% of NHP that were administered AAV through the CSF, and 32% of NHP that received an intravenous (IV) injection. We show that dose and age at injection significantly affected the severity whereas sex had no impact. DRG pathology was minimal at acute time points (i.e., <14 days), similar from one to 5 months post-injection, and was less severe after 6 months. Vector purification method had no impact, and all capsids and promoters that we tested resulted in some DRG pathology. The data presented here from five different capsids, five different promoters, and 20 different transgenes suggest that DRG pathology is almost universal after AAV gene therapy in nonclinical studies using NHP. None of the animals receiving a therapeutic transgene displayed any clinical signs. Incorporation of sensitive techniques such as nerve-conduction velocity testing can show alterations in a minority of animals that correlate with the severity of peripheral nerve axonopathy. Monitoring sensory neuropathies in human central nervous system and high-dose IV clinical studies seems prudent to determine the functional consequences of DRG pathology.


Assuntos
Dependovirus/genética , Gânglios Espinais/patologia , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Condução Nervosa , Animais , Feminino , Gânglios Espinais/metabolismo , Macaca fascicularis , Macaca mulatta , Masculino , Transdução Genética
13.
Hum Gene Ther ; 30(8): 957-966, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31017018

RESUMO

Many neuropathic diseases cause early, irreversible neurologic deterioration, which warrants therapeutic intervention during the first months of life. In the case of mucopolysaccharidosis type I, a recessive lysosomal storage disorder that results from a deficiency of the lysosomal enzyme α-l-iduronidase (IDUA), one of the most promising treatment approaches is to restore enzyme expression through gene therapy. Specifically, administering pantropic adeno-associated virus (AAV) encoding IDUA into the cerebrospinal fluid (CSF) via suboccipital administration has demonstrated remarkable efficacy in large animals. Preclinical safety studies conducted in adult nonhuman primates supported a positive risk-benefit profile of the procedure while highlighting potential subclinical toxicity to primary sensory neurons located in the dorsal root ganglia (DRG). This study investigated the long-term performance of intrathecal cervical AAV serotype 9 gene transfer of human IDUA administered to 1-month-old rhesus monkeys (N = 4) with half of the animals tolerized to the human transgene at birth via systemic administration of an AAV serotype 8 vector expressing human IDUA from the liver. Sustained expression of the transgene for almost 4 years is reported in all animals. Transduced cells were primarily pyramidal neurons in the cortex and hippocampus, Purkinje cells in the cerebellum, lower motor neurons, and DRG neurons. Both tolerized and non-tolerized animals were robust and maintained transgene expression as measured by immunohistochemical analysis of brain tissue. However, the presence of antibodies in the non-tolerized animals led to a loss of measurable levels of secreted enzyme in the CSF. These results support the safety and efficiency of treating neonatal rhesus monkeys with AAV serotype 9 gene therapy delivered into the CSF.


Assuntos
Dependovirus/genética , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Iduronidase/genética , Transgenes , Animais , Dependovirus/classificação , Feminino , Gânglios Espinais/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Iduronidase/metabolismo , Imuno-Histoquímica , Injeções Espinhais , Macaca mulatta , Neurônios/metabolismo , Especificidade de Órgãos , Regiões Promotoras Genéticas , Sorogrupo , Distribuição Tecidual
14.
Hum Gene Ther Clin Dev ; 30(1): 29-39, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30693797

RESUMO

Wilson disease (WD), an autosomal recessive disease caused by mutations in a copper-transporting P-type ATPase (Atp7b), causes severe liver damage. This disease is currently treated with the lifelong use of copper chelation therapy, which has side effects and does not fix copper metabolism. Here, we thoroughly characterized a mouse model of WD, the toxic milk mouse, and used the model to test a gene therapy approach for treating WD. WD mice accumulated copper in the liver from birth; severe copper accumulation and concurrent liver disease were evident by 2 months of age. Intravenously administering an adeno-associated viral (AAV) 8 vector expressing a codon-optimized version of the human ATP7B transgene into 2-month-old WD mice significantly decreased liver copper levels compared with age-matched, uninjected, WD mice. We also observed a significant dose-dependent decrease in liver disease. Male mice injected with 1011 genome copies of AAV8 vector showed only mild histopathological findings with a complete lack of liver fibrosis. Therefore, we conclude that administering gene therapy at the early stages of disease onset is a promising approach for reducing liver damage and correcting copper metabolism in WD.


Assuntos
ATPases Transportadoras de Cobre/genética , Cobre/metabolismo , Terapia Genética , Degeneração Hepatolenticular/terapia , Animais , Dependovirus/genética , Modelos Animais de Doenças , Degeneração Hepatolenticular/genética , Degeneração Hepatolenticular/metabolismo , Humanos , Fígado/lesões , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Transgênicos , Mutação
15.
Mol Genet Metab ; 125(3): 241-250, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253962

RESUMO

Argininosuccinic aciduria (ASA) is the second most common genetic disorder affecting the urea cycle. The disease is caused by deleterious mutations in the gene encoding argininosuccinate lyase (ASL); total loss of ASL activity results in severe neonatal onset of the disease, which is characterized by hyperammonemia within a few days of birth that can rapidly progress to coma and death. The long-term complications of ASA, such as hypertension and neurocognitive deficits, appear to be resistant to the current treatment options of dietary restriction, arginine supplementation, and nitrogen scavenging drugs. Treatment-resistant disease is currently being managed by orthotopic liver transplant, which shows variable improvement and requires lifetime immunosuppression. Here, we developed a gene therapy strategy for ASA aimed at alleviating the symptoms associated with urea cycle disruption by providing stable expression of ASL protein in the liver. We designed a codon-optimized human ASL gene packaged within adeno-associated virus serotype 8 (AAV8) as a vector for targeted delivery to the liver. To evaluate the therapeutic efficacy of this approach, we utilized a murine hypomorphic model of ASA. Neonatal administration of AAV8 via the temporal facial vein extended survival in ASA hypomorphic mice, although not to wild-type levels. Intravenous injection into adolescent hypomorphic mice led to increased survival and body weight and correction of metabolites associated with the disease. Our results demonstrate that AAV8 gene therapy is a viable approach for the treatment of ASA.


Assuntos
Argininossuccinato Liase/genética , Acidúria Argininossuccínica/terapia , Terapia Genética , Hiperamonemia/terapia , Animais , Argininossuccinato Liase/administração & dosagem , Acidúria Argininossuccínica/genética , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Hiperamonemia/genética , Hiperamonemia/patologia , Camundongos , Ureia/metabolismo
16.
Mol Ther Methods Clin Dev ; 10: 68-78, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30073178

RESUMO

Hunter syndrome is an X-linked recessive disease caused by deficiency of the lysosomal enzyme iduronate-2-sulfatase. The severe form of this progressive, systemic, and neurodegenerative disease results in loss of cognitive skills and early death. Several clinical trials are evaluating adeno-associated virus 9 for the treatment of neurodegenerative diseases using systemic or intrathecal lumbar administration. In large animals, administration via suboccipital puncture gives better brain transduction than lumbar administration. Here, we conducted a good laboratory practice-compliant investigational new drug-enabling study to determine the safety of suboccipital adeno-associated virus 9 gene transfer of human iduronate-2-sulfatase into nonhuman primates. Thirteen rhesus macaques received vehicle or one of two doses of vector with or without immunosuppression. We assessed in-life safety and immune responses. Animals were euthanized 90 days post-administration and sampled for histopathology and biodistribution. The procedure was well tolerated in all animals. Minimal mononuclear cerebrospinal fluid pleocytosis occurred in some animals. Asymptomatic minimal-to-moderate toxicity to some dorsal root ganglia sensory neurons and their associated axons occurred in all vector-treated animals. This study supports the clinical development of suboccipital adeno-associated virus 9 delivery for severe Hunter syndrome and highlights a potential toxicity that warrants monitoring in first-in-human studies.

17.
Mol Ther Methods Clin Dev ; 10: 79-88, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30073179

RESUMO

Mucopolysaccharidosis type I is a recessive genetic disease caused by deficiency of the lysosomal enzyme α-L-iduronidase, which leads to a neurodegenerative and systemic disease called Hurler syndrome in its most severe form. Several clinical trials are evaluating adeno-associated virus serotype 9 (AAV9) for the treatment of neurodegenerative diseases. Although these trials focus on systemic or lumbar administration, intrathecal administration via suboccipital puncture into the cisterna magna has demonstrated remarkable efficacy in large animals. We, therefore, conducted a good laboratory practice-compliant non-clinical study to investigate the safety of suboccipital AAV9 gene transfer of human α-L-iduronidase into nonhuman primates. We dosed 22 rhesus macaques, including three immunosuppressed animals, with vehicle or one of two doses of vector. We assessed in-life safety and immune responses. Animals were euthanized 14, 90, or 180 days post-vector administration and evaluated for histopathology and biodistribution. No procedure-related lesions or adverse events occurred. All vector-treated animals showed a dose-dependent mononuclear pleocytosis in the cerebrospinal fluid and minimal to moderate asymptomatic degeneration of dorsal root ganglia neurons and associated axons. These studies support the clinical development of suboccipital AAV delivery for Hurler syndrome and highlight a potential sensory neuron toxicity that warrants careful monitoring in first-in-human studies.

18.
Nat Biotechnol ; 36(8): 717-725, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29985478

RESUMO

Clinical translation of in vivo genome editing to treat human genetic diseases requires thorough preclinical studies in relevant animal models to assess safety and efficacy. A promising approach to treat hypercholesterolemia is inactivating the secreted protein PCSK9, an antagonist of the LDL receptor. Here we show that single infusions in six non-human primates of adeno-associated virus vector expressing an engineered meganuclease targeting PCSK9 results in dose-dependent disruption of PCSK9 in liver, as well as a stable reduction in circulating PCSK9 and serum cholesterol. Animals experienced transient, asymptomatic elevations of serum transaminases owing to the formation of T cells against the transgene product. Vector DNA and meganuclease expression declined rapidly, leaving stable populations of genome-edited hepatocytes. A second-generation PCSK9-specific meganuclease showed reduced off-target cleavage. These studies demonstrate efficient, physiologically relevant in vivo editing in non-human primates, and highlight safety considerations for clinical translation.


Assuntos
Colesterol/sangue , Desoxirribonucleases/metabolismo , Fígado/enzimologia , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Animais , Dependovirus/genética , Edição de Genes , Vetores Genéticos , Células HEK293 , Hepatócitos/metabolismo , Humanos , Hipercolesterolemia/enzimologia , Hipercolesterolemia/terapia , Células-Tronco Pluripotentes Induzidas/metabolismo , Macaca mulatta , Masculino , Camundongos , Camundongos Knockout , Receptores de LDL/antagonistas & inibidores
19.
Mol Ther ; 26(3): 664-668, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29428298

RESUMO

Improved delivery of adeno-associated virus (AAV) vectors to the CNS will greatly enhance their clinical utility. Selection of AAV9 variants in a mouse model led to the isolation of a capsid called PHP.B, which resulted in remarkable transduction of the CNS following intravenous infusion. However, we now show here that this enhanced CNS tropism is restricted to the model in which it was selected, i.e., a Cre transgenic mouse in a C57BL/6J background, and was not found in nonhuman primates or the other commonly used mouse strain BALB/cJ. We also report the potential for serious acute toxicity in NHP after systemic administration of high dose of AAV.


Assuntos
Dependovirus/genética , Engenharia Genética , Vetores Genéticos/genética , Animais , Biomarcadores , Proteínas do Capsídeo/genética , Dependovirus/classificação , Expressão Gênica , Técnicas de Transferência de Genes , Vetores Genéticos/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Especificidade de Órgãos/genética , Distribuição Tecidual , Transdução Genética
20.
Hum Gene Ther ; 29(3): 285-298, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29378426

RESUMO

Neurotropic adeno-associated virus (AAV) serotypes such as AAV9 have been demonstrated to transduce spinal alpha motor neurons when administered intravenously (i.v.) at high doses. This observation led to the recent successful application of i.v. AAV9 delivery to treat infants with spinal muscular atrophy, an inherited deficiency of the survival of motor neuron (SMN) protein characterized by selective death of lower motor neurons. To evaluate the efficiency of motor neuron transduction with an AAV9 variant (AAVhu68) using this approach, three juvenile nonhuman primates (NHPs; aged 14 months) and three piglets (aged 7-30 days) were treated with an i.v. injection of an AAVhu68 vector carrying a human SMN transgene at a dose similar to that employed in the spinal muscular atrophy clinical trial. Administration of 2 × 1014 genome copies per kilogram of body weight resulted in widespread transduction of spinal motor neurons in both species. However, severe toxicity occurred in both NHPs and piglets. All three NHPs exhibited marked transaminase elevations. In two NHPs, the transaminase elevations resolved without clinical sequelae, while one NHP developed acute liver failure and shock and was euthanized 4 days after vector injection. Degeneration of dorsal root ganglia sensory neurons was also observed, although NHPs exhibited no clinically apparent sensory deficits. There was no correlation between clinical findings and T-cell responses to the vector capsid or transgene product in NHPs. Piglets demonstrated no evidence of hepatic toxicity, but within 14 days of vector injection, all three animals exhibited proprioceptive deficits and ataxia, which profoundly impaired ambulation and necessitated euthanasia. These clinical findings correlated with more severe dorsal root ganglia sensory neuron lesions than those observed in NHPs. The liver and sensory neuron findings appear to be a direct consequence of AAV transduction independent of an immune response to the capsid or transgene product. The present results and those of another recent study utilizing a different AAV9 variant and transgene indicate that systemic and sensory neuron toxicity may be general properties of i.v. delivery of AAV vectors at high doses, irrespective of the capsid serotype or transgene. Preclinical and clinical studies involving high systemic doses of AAV vectors should include careful monitoring for similar toxicities.


Assuntos
Dependovirus , Vetores Genéticos/efeitos adversos , Proteína 1 de Sobrevivência do Neurônio Motor/biossíntese , Transgenes , Animais , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Vetores Genéticos/farmacologia , Haplorrinos , Humanos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/patologia , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Suínos , Fatores de Tempo , Transaminases/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...